Skip to main content

Top 10 problems of the week!

This week was full Number Theory and algebra biased!! 😄

Do try all the problems first!! And if you guys get any nice solutions, do post in the comments section!

Here are the walkthroughs of this week's top 5 Number Theory problems!

5th position (1999 JBMO P2): For each nonnegative integer $n$ we define $A_n = 2^{3n}+3^{6n+2}+5^{6n+2}$. Find the greatest common divisor of the numbers $A_0,A_1,\ldots, A_{1999}$.

Walkthrough: It doesn't require a walkthrough, I wrote this here, cause it's a cute problem for the person who has just started Contest math :P

a. What is $A_0$?

b. Find out $A_1$.

c. Show that $\boxed{7}$ is the required answer!

4th position (APMO, Evan Chen's orders modulo a prime handout): Let $a,b,c$ be distinct integers. Given that $a | bc + b + c, b | ca + c + a$

and $c | ab + a + b$, prove that at least one of $a, b, c$ is not prime.

Walkthrough: Fully thanks to MSE ! (Also one should try MSE, it has helped me a lot, ofc it's more tilted to College math but it's great! )

a. FTSOC let $a,b,c$ be primes. Then note that by simon's favorite factoring trick , we get $(b+1)(c+1)\equiv 1 \mod a$ , similarly for $b,c$.

b. Bound $\frac{(a+1)(b+1)(c+1)}{abc}$ and get a contradiction !

3rd position (IMO 2011 P1): Given any set $A = \{a_1, a_2, a_3, a_4\}$ of four distinct positive integers, we denote the sum $a_1 +a_2 +a_3 +a_4$ by $s_A$. Let $n_A$ denote the number of pairs $(i, j)$ with $1 \leq  i < j \leq 4$ for which $a_i +a_j$ divides $s_A$. Find all sets $A$ of four distinct positive integers which achieve the largest possible value of $n_A$.

Walkthrough: This was clearly the hardest of all like I took  lot of hints :P.

a. Show that $n_A\ne 6,5$.

b. We will show that $n_A=4$ is possible. hmm...so what do we have ? 

c. Show that $a_1+a_4=a_2+a_3$.

d. So $a_1+a_2|2(a_2+a_3) \implies k_1(a_1+a_2)=2(a_2+a_3)$ , and similarly $k_2(a_1+a_3)=2(a_2+a_3)$ , where $k_1>k_2$.

e.But note that $2a_3+2a_1>2(a_2-a_1) \implies k_2=3$.

f. Show that $k(a_1+a_2)=6a_2-6a_1 \implies k_1=4,5$

g. Case bash!!!!!!!!! 

2nd position(IMO 2011 P5) : Let $f$ be a function from the set of integers to the set of positive integers. Suppose that, for any two integers $m$ and $n$, the difference $f(m) - f(n)$ is divisible by $f(m- n)$. Prove that, for all integers $m$ and $n$ with $f(m) \leq f(n)$, the number $f(n)$ is divisible by $f(m)$.

Walkthrough: Thanks to the Pr0est Mueller.25

a. Take $P(m,0)$ and show that $f(m)|f(0)$ for all $m$. This gives that $f(x)$ has finite solutions.

b. Take $P(0,n)$ and $P(0,-n) $ and show that $f(n)=f(-n)$.

c. Prove by induction that if $a|b \implies f(a)|f(b)$ [it's not required, we just want $f(1)|f(b)$, but it's cute, so one can try].

d. Since $f(x)$ has finite solution, let the solutions be $f(1)<f(a_1)< \dots <f(a_k)<f(0)$.

e. So.. the problem now reduces on showing $f(a_i)|f(a_j)$ when $i<j$. 

f. okay so we have $f(1)|f(a_i)$ , so let's try showing $f(a_1)|f(a_2)$.

g. Let's take $P(a_2,a_1)$ then show that $f(a_2-a_1)= f(a_1)$ or $f(1)$.

h. But we want to show that $f(1)|f(2)$ . But note that if we show that $f(a_2-a_1)= f(a_1)$, then we will be done! So let's try to show that!

i. Take $P(a_2-a_1, -a_1)$ and wola!

1st Position (IMO Shortlist 2011 N3):  Let $n \geq 1$ be an odd integer. Determine all functions $f$ from the set of integers to itself, such that for all integers $x$ and $y$ the difference $f(x)-f(y)$ divides $x^n-y^n.$

Walkthrough: a. Try to guess what possible solutions can be by taking $n=1,3,6$ ( just guess, no need to prove :P) 

b. Note that if $f(x)$ works then $f(x)+c, -f(x)$ works too. So we can assume $f(0)=0$ and $f(1)=1$.

c. With $P(p,1)$ and $P(p,0)$, where $p$ is a prime, show that $f(p)=\pm p^k$ , where $k|n$ 

d. Show $f(p)\ne -p^k$ [ we here use the fact that when $a^b-1|a^c-1 \implies b|c$ and also $k\ne 0$ ]

e. But n has finitely many prime factors , and there are finitely many prime, so there will exist a prime factor of $n$ say $d$ , which will be used infinitely times. So let $q$ be a very( verrrry big) prime with $f(q)=q^d$

f. Take $P(x,q)$, and show that $f(x)=x^d$. And then conclude! 

g. Solutions are $\boxed{f(x)=\pm x^d+c}$ where $d|n$.

Next are the walkthroughs of this week's top 5 Algebra problems! This is only for beginners algebra people ( It's not my fault that people who are reading this blog are pr0s 😎). *Take it more like as a set of problems to motivate you to study algebra :P

5th position (2010 AMC 10 A P21) : The polynomial $x^3-ax^2+bx-2010$ has three positive integer roots. What is the smallest possible value of $a$?

Walkthrough: a. Use Vieta's formula and factorize $2010=2\cdot 3 \cdot 5\cdot 67$ 

b. okay to minimize , obviously 6,5,67 will be answer :P (idk how to explain this part , it actually follows trivially :P)

4th position (NIMO summer contest P9): The roots of the polynomial $P(x) = x^3 + 5x + 4$ are $r, s$, and $t$. Evaluate$ (r + s) ^4 (s + t) ^4 (t + r)^ 4$

Walkthrough: a. Use Viteta's , we get $r+s+t=0$ 

b. we just have to find $(rst)^4$.

3rd position (AIME 2008 II P7): Let $ r$, $ s$, and $ t$ be the three roots of the equation $8x^3+1001x+2008=0.$ Find $ (r+s)^3+(s+t)^3+(t+r)^3$.

Walkthrough: Ooo quite similar to the problem we did  previously.

a. Use viteta and get $r+s+t=0$. So $ (r+s)^3+(s+t)^3+(t+r)^3=-(t^3+r^3+s^3)$.

b. So for people who are in grade 9 or below India standard, or any beginner in algebra, there's a very well known formula, which says $a^3+b^3+c^3=3abc$ , when $a+b+c=0$, it's just $a^3 + b3^ + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$ . Use it and we are done!

2nd position (2017 AMC 12 A P17) : There are $24$ different complex numbers $z$ such that $z^{24}=1$. For how many of these is $z^6$ a real number?

Walkthrough:  I don't think so any walkthrough is needed :P. Answer is $\boxed{12}$. Consider $z^{{\frac{2\pi\cdot i \cdot k}{24}}\cdot 6}$ , it will be real iff $k$ is even .

1st Position(JBMO 2012 Shortlist): Let $a$ , $b$ , $c$ be positive real numbers such that $abc=1$ . Show that :

$\frac{1}{a^3+bc}+\frac{1}{b^3+ca}+\frac{1}{c^3+ab} \leq \frac{ \left (ab+bc+ca \right )^2 }{6}$

Walkthrough: a. Use AM-GM and get $a^3+bc\ge 2a$.

b. Try to get this $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le \frac{(ab+bc+ca)^2}{3}$ , conclude with AM-GM again !

So these were my top 10 ! I personally wanted to add JMO 2017 P4, but didn't ( due to some soul imbalance , you will understand what I mean once you try this problem) . Go ahead and try if u want to :P.

What are your top 10s ? do write in the comments section (at least write something ! I will be happy to hear your comments ). Follow this blog if you want to see more contest math problems! See you all soon 😊.

---

I also made a pdf compilation of these problems and hints. Here is the google drive link https://drive.google.com/file/d/1sFQBU1MDIYGXWKG_1Bb6TpUAfTZfT4en/view?usp=sharing

Sunaina 💜

Comments

Post a Comment

Popular posts from this blog

LMAO Revenge

Continuing the tradition of past years, our seniors at the Indian IMO camp(an unofficial one happened this year) once again conducted LMAO, essentially ELMO but Indian. Sadly, only those who were in the unofficial IMOTC conducted by Pranav, Atul, Sunaina, Gunjan and others could participate in that. We all were super excited for the problems but I ended up not really trying the problems because of school things and stuff yet I solved problem 1 or so did I think. Problem 1:  There is a   grid of real numbers. In a move, you can pick any real number  ,  and any row or column and replace every entry   in it with  .  Is it possible to reach any grid from any other by a finite sequence of such moves? It turned out that I fakesolved and oh my god I was so disgusted, no way this proof could be false and then when I was asked Atul, it turns out that even my answer was wrong and he didn't even read the proof, this made me even more angry and guess wha...

Functional Equations 101

Let's get to the math:  Let there be two sets $X$ and $Y$. A function  from $X$ to $Y$ denoted as $f \colon X \to Y$ is assigning a value in $Y$ for every element in $X$. We say that $X$ is the domain of the function $f$ and $Y$ is the range.  A function $f \colon X \to y$ is said to be injective if $f(x) = f(x^{\prime}) \implies x = x^{\prime}$ To put it in a more abstract way, if there is some $a \in Y$ then there is at most one $b \in X$ such that $f(b) = a$ holds true.  A function is said to be surjective when for any $a \in Y$ there is at least one $b \in X$ such that $f(b) = a$ holds true.  A function is bijective if for every $a \in Y$ there is exactly one $b \in X$ such that $f(b) = x$. Bijective functions are basically functions which are both injective and surjective.  Bonus: A function $f \colon X \to X$ is known as an involution if $f(f(x)) = x \; \forall  x \in X$  As an exercise, the readers should try to prove that every function th...

RMO 2024: Discussing Solutions

Hello everyone!  Congratulations to everyone who attempted the RMO 2024. As you might know, we had an amazing livesolve of the paper with Archit, Adhitya, Abel and Kanav which you can check out  here . We also have question wise video solutions to all the problems, thanks to Nanda, Om and Shreya!  We had a lot of people interested in solutions for the KV/JNV paper, which is what this blog post will be about. Without further ado, let's get started! Problem 1:  Find all positive integers $x,y$ such that $202x+4x^2=y^2$. Solution:  Notice that $y>2x$. Let $y=2x+k$ for some integer $k>0$. Thus, the given equation reduces to $$202x=4xk+k^2\implies x=\frac{k^2}{202-4k}\cdots (1)$$ This tells us that $202-4k|k^2,$ or that $101-2k|2k^2\implies 101-2k|101k$. However, since 101 is a prime, $\gcd(101-2k,\,101)=1\implies 101-2k|k$ or that $101-2k|2k\implies 101-2k|101\implies k=50$. Substituting in $(1)$, we get that $x$ must be $$\frac{50^2}{202-4(50)}=50\cdot 25=12...