Skip to main content

Preliminaries of the LTE Lemma

In this post I will discuss the preliminary theory underlying the Lifting the Exponent Lemma (let's refer it to as LTE from now on) which is  one of the foundational topics of Olympiad Number Theory.  It is a useful technique to think of whenever we come across Diophantine equations having exponents and it is even better if those exponents are primes. Comfort with modular arithmetic is assumed. If the reader is not fluent in Modular arithmetic, a quick reading from any handout is sufficient. (I highly recommend  this )

So before starting things off, here are a few conventions that we will follow: We say an integer $b$ divides $a$ iff there is an integer $c$ such that $a = bc$. We denote it as $b \mid a$. We now take a look at more interesting things. 

Consider the following: What is the greatest power of $3$ that divides $63$? It is easy to see that it's $2$. i.e $3^2 \mid 63$. We denote this as $\nu_3(63) = 2$. So let us now define it formally. 

$\nu_p(x)$ is defined as the highest power in which a prime number $p$ divides $x$. So, if $\nu_p(x) = a$ then $p^a \mid x$ but $p^{a+1} \nmid x$. We also use the notation $$p^a || \; x$$ if and only if $\nu_p(x) = a$. From this we get the following relations(these are easy to prove if you understand the definition of $\nu_p(x)$ so I recommend you try to prove them on your own.) :   

  •  $\nu_p(xy) = \nu_p(x) + \nu_p(y)$ 
  •  $\nu_p(x+y) \ge \min\{\nu_p(x) , \nu_p(y)\}$ 
  •  $\nu_p(0) = \infty$ for all prime numbers $p$.  
  • If $p$ and $q$ are different prime numbers then the following holds true $$\nu_p(p^a q^b) = a$$  

We will now utilize the above properties and look at the following two lemmas.

Lemma: Let $x$ and $y$ be integers and let $n \in \mathbb{Z}^+$. For any arbitrary prime number $p$, such that $n$ and $p$ are coprime, $p \mid x-y$ and $p \nmid x$ and $p \nmid y$. We have the following $$\nu_p(x^n - y^n) = \nu_p(x-y)$$

Proof: We use the following well known algebraic trick $$x^n - y^n = (x-y)(x^{n-1}y^0 + x^{n-2}y + \dots + x^0y^{n-1})$$ Now we want to show $$p \nmid x^{n-1}y^0 + x^{n-2}y + \dots + x^0y^{n-1}$$ To show that this is actually true, we take advantage of the fact that $p \mid x-y$. Which implies that $x-y \equiv 0 \pmod{p}$. This gives the us following:   

$$x^{n-1} + x^{n-2}y + \dots + y^{n-1}$$$$\equiv x^{n-1} + x^{n-2} \cdot x + x^{n-3} \cdot x^2 + \dots + x \cdot x^{n-2} + x^{n-1}$$$$\equiv nx^{n-1}$$$$\not \equiv 0 \pmod{p}$$

Which concludes the proof. $\square$ 

Here's another important lemma. 

Lemma: Let $x$ and $y$ be integers and let $n$ be an odd positive integer. Given some arbitrary prime number $p$, such that $n$ and $p$ are co-prime, $p \mid x+y$, $p \nmid x$ and $p \nmid y$, the following holds true $$\nu_p(x^n + y^n) = \nu_p(x+y)$$  Proof: Since both $x$ and $y$ can take negative values, by the previous lemma we obtain $$\nu_p(x^n - (-y^n)) = \nu_p(x-(-y)) \implies \nu_p(x^n + y^n) = \nu_p(x+y)$$  Now observe that $n$ is odd and hence $(-y)^n$ can be replaced with $-y^n$ which finishes the proof. $\square$ 

We have now developed enough tools to take a look at the "LTE Lemma". Here it goes: 

Theorem: Let $x$ and $y$ be two integers. Let $n$ be a positive integer and let $p$ be an odd prime such that $p \mid x-y$ but $p \nmid x$ and $p \nmid y$. Then the following holds true $$\nu_p(x^n - y^n) = \nu_p(x-y) + \nu_p(n)$$

Proof: We will first prove that the following relation holds true $$\nu_p(x^p - y^p) = \nu_p(x-y) + 1$$

To prove this, we will prove two more claims, they are as follows $$p \mid x^{p-1} + x^{p-2}y + \dots + y^{p-1}$$

and  $$p^2 \nmid x^{p-1} + x^{p-2}y + \dots + xy^{p-2} + y^{p-1}$$ To prove the second sub-claim, just observe the fact that $$x^{p-1} + x^{p-2}y + \dots + xy^{p-2} + y^{p-1} \equiv px^{p-1} \equiv 0 \pmod{p}$$ Now denote by $d = x+kp$ where $k \in \mathbb{Z}$ For any integer $t \in [1 , p)$ we get:  

$$d^tx^{p-1-d} \equiv (x+kp)^{t} x^{p-1-t}$$ $$\equiv x^{p-1-t} \left(x^t + t(kp)(x^{t-1}) + \frac{t(t-1)}{2}(kp)^2(x^{t-2)} + \dots \right)$$$$\equiv x^{p-1-t} \left(x^t + t(kp)(x^{t-1}) \right)$$$$\equiv x^{p-1} + tkpx^{p-2} \pmod{p^2}$$ which gives us that $$d^{t}x^{p-1-t} \equiv x^{p-1} + tkpx^{p-2} \pmod{p^2}$$ where $t = \{1,2,3,4,\dots,p-1\}$ Using this we derive the following relations $$x^{p-1} + x^{p-2}y + \dots + xy^{p-2} + y^{p-1}$$ $$\equiv x^{p-1} + (x^{p-1} + kpx^{p-2}) + (x^{p-1} + 2kpx^{p-2}) + \dots + (x^{p-1} + (p-1)(kpx^{p-2})$$ $$\equiv px^{p-1} + (1+2+3+4+\dots+p-1)kpx^{p-2}$$ $$\equiv px^{p-1} + \left(\frac{p(p-1)}{2}\right) kpx^{p-2}$$$$\equiv px^{p-1} + \left(\frac{p-1}{2}\right) kp^2x^{p-1}$$$$\equiv px^{p-1} \not \equiv 0 \pmod{p^2}$$After successfully proving all our sub-claims, we can now move onto our main problem. We had to prove the following $$\nu_p(x^n - y^n) = \nu_p(x-y) + \nu_p(n)$$ The reader can hopefully now conclude the proof by themselves. The key to prove this is to convert $n$ in the form $p^{\omega}b$ where $p$ and $b$ are co-prime. $\square$ 

Theorem: Let $x$ and $y$ be integers and $n$ be an odd integer greater than zero and $p$ be an odd prime such that $p \mid x+y$ and neither $x$ nor $y$ is divisible by $p$. Then the following holds true $$\nu_p(x^n + y^n) = \nu_p(x+y) + \nu_p(n)$$ Proof:  Follows from the previous theorem $\square$ 

A careful reader must have observed that we have been imposing a weird condition on the primes, i.e we are always assuming that the primes are odd. Well, in part of the post, we'll look what exactly happens when the prime $= 2$.  

Theorem: Let $x$ and $y$ be two odd integers such that $4 \mid x-y$. Then the following holds $$\nu_2(x^n - y^n) = \nu_2(x-y) + \nu_2(n)$$Proof: We have previously proved that for any prime number $p$, which is co-prime to $n$ and $p \mid x-y$ and $p \nmid x,y$ then the following relation is true $$\nu_p(x^n - y^n) = \nu_p(x-y)$$ so it suffices to check that $$\nu_2 \left(x^{2^n} - y^{2^n}\right) = \nu_2(x-y) + n$$ which upon factorization leads to the following  

$$x^{2^n} - y^{2^n} = \left(x^{2^{n-1}} + y^{2^{n-1}} \right) \left( x^{2^{n-2}} + y^{2^{n-2}}\right) \dots \left(x^2 + y^2 \right)(x+y)(x-y)$$ Now since $$x \equiv y \equiv \pm 1 \pmod{4}$$ we see that the following is true for all positive integers $k$: $$x^{2^k} \equiv y^{2^k} \equiv 1 \pmod{4}$$ and so for $k \in \{1,2,3,4,\dots\}$ we have $$x^{2^k} + y^{2^k} \equiv 2 \pmod{4}$$ and using the fact that both $x$ and $y$ are odd and also since $4$ divides the difference of $x$ and $y$, $x + y \equiv 2 \pmod{4}$ which finishes the proof $\square$ 

Theorem: Let $x$ and $y$ be two odd positive integers and let $n$ be an even positive integer. Then $$\nu_2(x^n - y^n) = \nu_2(x-y) + \nu_2(x+y) + \nu_2(n) - 1$$

Proof: We will be using the fact that the square of an odd integer is of the form of $4k + 1$ for some integer $k$. Hence, for odd integers $x$ and $y$, we get that $4 \mid x^2 - y^2$. Now define $l$ to be an odd integer and $k$ be a positive integer such that $n  = l \cdot 2^{k}$. Then$$\nu_2(x^n - y^n) = \nu_2 \left(x^{l \cdot 2^k} - y^{l \cdot 2^k}\right)$$ $$= \nu_2 \left(\left(x^2 \right)^{2^{k-1}} - \left(y^2 \right)^{2^{k-1}}\right)$$$$\vdots$$ $$\nu_2(x-y) + \nu_2(x+y)+ \nu_2(n) - 1$$$\square$   

These were the fundamental theorems concerning the LTE lemma. I'm still in the process of collecting problems on the topic and hence I plan to write a second part of this where I'll discuss problems that use this lemma. 



Popular posts from this blog

LMAO Revenge

Continuing the tradition of past years, our seniors at the Indian IMO camp(an unofficial one happened this year) once again conducted LMAO, essentially ELMO but Indian. Sadly, only those who were in the unofficial IMOTC conducted by Pranav, Atul, Sunaina, Gunjan and others could participate in that. We all were super excited for the problems but I ended up not really trying the problems because of school things and stuff yet I solved problem 1 or so did I think. Problem 1:  There is a   grid of real numbers. In a move, you can pick any real number  ,  and any row or column and replace every entry   in it with  .  Is it possible to reach any grid from any other by a finite sequence of such moves? It turned out that I fakesolved and oh my god I was so disgusted, no way this proof could be false and then when I was asked Atul, it turns out that even my answer was wrong and he didn't even read the proof, this made me even more angry and guess what? I was not alone, Krutarth too fakesol

The importance of "intuition" in geometry

Hii everyone! Today I will be discussing a few geometry problems in which once you "guess" or "claim" the important things, then the problem can easily be finished using not-so-fancy techniques (e.g. angle chasing, power-of-point etc. Sometimes you would want to use inversion or projective geometry but once you have figured out that some particular synthetic property should hold, the finish shouldn't be that non trivial) This post stresses more about intuition rather than being rigorous. When I did these problems myself, I used freehand diagrams (not geogebra or ruler/compass) because I feel that gives a lot more freedom to you. By freedom, I mean, the power to guess. To elaborate on this - Suppose you drew a perfect  diagram on paper using ruler and compass, then you would be too rigid on what is true in the diagram which you drew. But sometimes that might just be a coincidence. e.g. Let's say a question says $D$ is a random point on segment $BC$, so maybe

Edge querying in graph theory

In this post, I will present three graph theory problems in increasing difficulty, each with a common theme that one would determine a property of an edge in a complete graph through repeated iterations, and seek to achieve a greater objective. ESPR Summer Program Application: Alice and Bob play the following game on a $K_n$ ($n\ge 3$): initially all edges are uncolored, and each turn, Alice chooses an uncolored edge then Bob chooses to color it red or blue. The game ends when any vertex is adjacent to $n-1$ red edges, or when every edge is colored; Bob wins if and only if both condition holds at that time. Devise a winning strategy for Bob. This is more of a warm-up to the post, since it has a different flavor from the other two problems, and isn't as demanding in terms of experience with combinatorics. However, do note that when this problem was first presented, applicants did not know the winner ahead of time; it would be difficult to believe that Bob can hold such a strong