Skip to main content

Numbers, and that too IMAGINARY!!

 Hi, I am Emon and yes, I am gonna write something today, after a long period of time, maybe on some imaginary numbers and in turn, complex numbers?

Okay, so let's look back into the history of complex numbers which first evolved mainly in the country of Italy...

Back in the $16$th century, a famous Italian mathematician, Niccolo Fontana Tartaglia posed the following problem in a journal :

Can you find a number $x$ such that $x^3+px=q$, where $p, q$ are given numbers?

In fact, he had a secret formula to this question : $$\boxed{x=\sqrt[3]{\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}} + \sqrt[3]{\frac{q}{2}-\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}}}$$

Later, Italian Mathematician, Gerolamo Cardano proposed the same problem, with the only modification $p\mapsto -p$ :
Can you find a number $x$ such that $x^3=px+q$, where $p, q$ are given numbers?

He went on to give a second problem by asking :
"Can you divide $10$ into two parts such that their product is $40$?"

The people of those days, having no idea of imaginary numbers whatsoever said, "No, it's not possible!".
But, Cardano said, "Why? Just consider two numbers $5+\sqrt{-15}$ and $5-\sqrt{-15}$."

A few more problems involving the same idea were proposed by some other mathematicians as well. Mathematician Rafael Bombelli, another Italian, proposed a problem: Find $x$ such that $x^3=15x+4$.
Now, everyone, at very first sight answered, "$4!$". Bombelli announced that the answer was correct, but he, at the same time, gave a really intriguing solution, which involved the secret formula of Tartaglia...
Solution of Bombelli. By the secret formula of Tartaglia, we get, $$\begin{aligned} x &=\sqrt[3]{2+\sqrt{-121}}+\sqrt[3]{2-\sqrt{-121}}\\ &= 2+\sqrt{-1}+2-\sqrt{-1}\\ &= 4.\end{aligned}$$
So, basically, the solutions are exactly the same...

Later on, $\sqrt{-1}$ was defined as $i$, and was originally coined by Rene Descartes in the $17$th century and in the future, got wide acceptance from Leonhard Euler in the $18$th century and Augustin-Louis Cauchy and Carl Friedrich Gauss in the $19$th century. The imaginary number was combined with a real number to form the complex number $z=a+ib$, where $a, b\in \mathbb{R}$ and $i=\sqrt{-1}$. Hence, the largest set of numbers $\mathbb{C}$, overtaking the reals $\mathbb R$, came into being and the era of complex numbers started. 

Comments

Popular posts from this blog

LMAO Revenge

Continuing the tradition of past years, our seniors at the Indian IMO camp(an unofficial one happened this year) once again conducted LMAO, essentially ELMO but Indian. Sadly, only those who were in the unofficial IMOTC conducted by Pranav, Atul, Sunaina, Gunjan and others could participate in that. We all were super excited for the problems but I ended up not really trying the problems because of school things and stuff yet I solved problem 1 or so did I think. Problem 1:  There is a   grid of real numbers. In a move, you can pick any real number  ,  and any row or column and replace every entry   in it with  .  Is it possible to reach any grid from any other by a finite sequence of such moves? It turned out that I fakesolved and oh my god I was so disgusted, no way this proof could be false and then when I was asked Atul, it turns out that even my answer was wrong and he didn't even read the proof, this made me even more angry and guess wha...

Functional Equations 101

Let's get to the math:  Let there be two sets $X$ and $Y$. A function  from $X$ to $Y$ denoted as $f \colon X \to Y$ is assigning a value in $Y$ for every element in $X$. We say that $X$ is the domain of the function $f$ and $Y$ is the range.  A function $f \colon X \to y$ is said to be injective if $f(x) = f(x^{\prime}) \implies x = x^{\prime}$ To put it in a more abstract way, if there is some $a \in Y$ then there is at most one $b \in X$ such that $f(b) = a$ holds true.  A function is said to be surjective when for any $a \in Y$ there is at least one $b \in X$ such that $f(b) = a$ holds true.  A function is bijective if for every $a \in Y$ there is exactly one $b \in X$ such that $f(b) = x$. Bijective functions are basically functions which are both injective and surjective.  Bonus: A function $f \colon X \to X$ is known as an involution if $f(f(x)) = x \; \forall  x \in X$  As an exercise, the readers should try to prove that every function th...

RMO 2024: Discussing Solutions

Hello everyone!  Congratulations to everyone who attempted the RMO 2024. As you might know, we had an amazing livesolve of the paper with Archit, Adhitya, Abel and Kanav which you can check out  here . We also have question wise video solutions to all the problems, thanks to Nanda, Om and Shreya!  We had a lot of people interested in solutions for the KV/JNV paper, which is what this blog post will be about. Without further ado, let's get started! Problem 1:  Find all positive integers $x,y$ such that $202x+4x^2=y^2$. Solution:  Notice that $y>2x$. Let $y=2x+k$ for some integer $k>0$. Thus, the given equation reduces to $$202x=4xk+k^2\implies x=\frac{k^2}{202-4k}\cdots (1)$$ This tells us that $202-4k|k^2,$ or that $101-2k|2k^2\implies 101-2k|101k$. However, since 101 is a prime, $\gcd(101-2k,\,101)=1\implies 101-2k|k$ or that $101-2k|2k\implies 101-2k|101\implies k=50$. Substituting in $(1)$, we get that $x$ must be $$\frac{50^2}{202-4(50)}=50\cdot 25=12...