Skip to main content

Mathematics - An Art of Thinking

"Mathematics is not about numbers, equations, computations, or algorithms: it is about understanding."
— William Paul Thurston, American mathematician

In a previous blog, I spoke a lot about what mathematics isn’t. However, I don’t think I spoke quite enough on what mathematics truly is.

Here's how I began that blog.

"When we’re young we begin by learning the steps to add – we’re given the rules and we must learn to repeat them – no questions asked. Why does carry forward work the way it does? Well, no questions asked."

However, I believe that the essence of truly understanding mathematics lies in the questions you ask – and the first one, the most fundamental one, is also probably one of the hardest questions you would and could find – What really is Mathematics?

Something that differentiates explaining what mathematics is from explaining a lot of other concepts is that mathematics was not really ever invented. If a young student angry about excessive math homework was given a time machine, he would not know how to use it to prevent the presence of math in their homework. Mathematics has been around ever since humanity has been around. Probably even before. Various philosophers, scientists and mathematicians have made their contributions to the subject. But mathematics is something that has been discovered over time, not invented.

One of the most important misconceptions about mathematics is that mathematics is well – like addition, subtraction of numbers and like stuff related to that.  This claims math to be about using different operations on numbers and in a sense, we almost always need to use these in one form or another. However, the distinction is that what has been described is arithmetic, and not mathematics.

Essentially all arithmetic does is providing you with a certain basic set of tools which you can use in your study of the subject of mathematics. So, mathematics is not about additions, or subtractions. Multiplications, or divisions. Mathematics lies in how you put these powerful tools together to build a world of your own.

According to Po Shen Loh,

“If you ask me what math is, I’ll say math is actually the distilled heart of thinking. It’s logic. As you learn how to assemble these chains of logic, you can use that skill for anything. So, my real goal is to help the world become a more thinking place”

This is really the way I like to think about mathematics. As an art of thinking. As an art of problem solving.

And that’s my answer to what mathematics really is. An art of thinking.

However, many of the people reading may feel that the description above is extremely vague. Of course, we couldn’t be using mathematics when we’re thinking about what to write in an English composition. Or could we?

Maybe a better definition could be the art of problem solving. In its essence, the two really mean the same thing but this description allows one to better understand what exactly is meant. What the subject of mathematics really aims at doing is make the world a more thinking place – a place where we have a greater ability to solve real life problems.

As a child, all of us must have been intrigued by the question on whether we were left-brained or right brained. If you’re mostly analytical and logical in your thinking, the theory says that you’re left brained. If you tend to be more creative or intuitive, you’re right-brained.

A sensible conclusion would be that a mathematician falls into the left brained category. However as weird as this may sound, creativity, intuition and imagination are ideas imbedded in the heart of mathematics – an idea a majority of people never really realise. It is for this reason that invoking the spirit of mathematical thinking is so important in today’s day and age. Mathematics has the potential to be our greatest asset in teaching the future generation to meet the future with curiosity, creativity and courage.

I’ll end this blog the same way as my blog earlier, to emphasize on the importance of the very idea.

Mathematics really is a subject that can change the world – and it is unfortunate that a lot of students do not ever get to see much of its magic in their education. If every student gets to see the power of mathematics, a subject where we create, we imagine and we innovate - maybe the day is not very far away when every student would come back home and say,

“Math? – Oh, who doesn’t love math.”

I'll sign off with this thought.

Until next time,

Rushil :)

PS: I would love to know how all of you see the subject of mathematics - what you love about it, and how your opinion differs from this so feel free to comment below!


Popular posts from this blog

EGMO solutions, motivations and reviews ft. Atul, Pranjal and Abhay

The  European Girls' Mathematical Olympiad a.k.a EGMO 2022 just ended. Congrats to Jessica Wan from USA, Taisiia Korotchenko, and Galiia Sharafetdinova for the perfect scores! Moreover, the Indian girls brought home 4 bronze medals! By far, this is the best result the EGMO India Team has ever achieved! To celebrate the brilliant result, here's a compilation of EGMO 2022 solutions and motivations written by my and everyone's favorite IMOTCer Atul ! And along with that, we also have reviews of each problem written by everyone's favorite senior, Pranjal !  These solutions were actually found by Atul, Pranjal,  and Abhay  during the 3-hour live solve. In the live solve, they solved all the 6 problems in 3 hours 😍!!! Okie Dokie, I think we should get started with the problems! Enjoy! Problem 1:  Let $ABC$ be an acute-angled triangle in which $BC<AB$ and $BC<CA$. Let point $P$ lie on segment $AB$ and point $Q$ lie on segment $AC$ such that $P \neq B$, $Q \neq C$ and

Kőnig-Egerváry theorem

Graph theory has been my most favourite thing to learn in maths and and in this blog i hope to spread the knowledge about Kőnig's theorem. It is advised that the readers are aware about basic graph theory terminologies including bipartite graphs. Before going on to the theorem i would like to go on about matchings and vertex cover which we are going to use in the theorem  Matchings A matching $M$ of a graph $G$ is a subset of the edges of a graph in which no two edge share a common vertex (non adjacent edges). For example :- The Matching $M$ over here is edge $\{ 3 - 5 , 1-2 , \}$ or $\{ 1 - 2 , 4 - 3 \}$ etc .  Maximum Matching is a matching that contains the largest possible number of edges for instance in the above example the maximum matching is 2 edges as there cannot be a subset of non adjacent edges having greater than 2 edges (Readers are advised to try so they can convince themselves) A Perfect Matching  is a matching that matches all vertices of the graph or in other sen

Algorithms, or Mathematics?!

Hi everyone! In my last blog, I spoke about a couple of very interesting algorithmic techniques and how they can be used to solve a variety of very interesting problems. This blog however, is going to be completely different.   When we’re young we begin by learning the steps to add – we’re given the rules and we must learn to repeat them – no questions asked. Why does carry forward work the way it does? Well, no questions asked. To some extent, it is important to know how exactly to do a certain set of things while first learning maths. We may not be able to get anywhere in a subject if we’re unable to learn a few basic rules and know how to use them. However, after a certain point it is important to bring in the spirit of mathematical thinking within each student too – something missing in almost every form of school math education. Mathematical miseducation is so common, we wouldn’t even see it. We practically expect a math class to look like repetition and memorisation of disjointed